$$\frac{\text{Theorem:}}{\text{D} = 4 - E}$$
where D: superficial degree of divergence
E: number of external lines
$$\frac{\text{Proof:}}{\text{Zet us define I as the number of internal lines, V as number of vertices, L as number of loops.}$$

$$\frac{\text{example diagram:}}{\text{L} = 2$$

$$I = 5$$

$$V = 4$$

$$\frac{\text{L} = 2}{\text{I} = 5}$$

$$V = 4$$

$$\frac{\text{L} = 1 - (V - 1) - \text{overall mon.}}{\text{cons.}}$$

$$\frac{\text{carries momentum carries mon.}}{\text{carries momentum carries momentum carries$$

For example, for the above diagram the eq. gives: (1)2 = 5-(4-1) V 50 -> for each vertex there are 4 lines coming in (or going out) nes ··· 4 lines 4 lines since internal lines connect vertices, they count twice, giving 4V = E + 2I(よ) (our diagram: 4.4 = 6 + 2.5) -> finally, for each loop there is a d'K while for each internal line there is i/(x2-m2+is), giving (こ) $\mathcal{D} = 4L - 2\hat{L}$ Putting (1), (2), (3) together gives :

Degree of divergence with fermions
Consider now the Yukawa theory with Lagr.

$$\mathcal{L} = \overline{\Psi}(iY^{n}\partial_{n} - m_{p})\Psi + \frac{1}{2}[(2\theta)^{2} - m_{p}^{2}(\theta^{2}] - \lambda_{p}\theta^{4} + \int_{p}^{p} \overline{\Psi}\Psi + \frac{1}{2} + \int_{p}^{p} (2\theta)^{2} - m_{p}^{2}(\theta^{2}) + \int_{p}^{p} (\theta^{2})^{2} + \int_{p}^{p}$$

$$\Rightarrow D = 4L - I_{f} - 2I_{b}$$

$$= 4((I_{f} + I_{b}) - (V_{f} + V_{h} - 1)) - I_{f} - 2I_{b}$$

$$= 4\left[I_{f} + I_{b} - (\frac{1}{2}E_{f} + I_{f}) - \frac{1}{4}(E_{b} - \frac{1}{2}E_{f} + 2I_{b} - I_{f}) + 1\right]$$

$$- I_{f} - 2I_{b}$$

$$= 4 I_{f} + 4I_{b} - 2E_{f} - 4I_{f} - E_{b} + \frac{1}{2}E_{f} - 2I_{b}$$

$$= 4 - \frac{3}{2}E_{f} - E_{b}$$
So the divergent diagrams with $D \ge 0$
are those for which
$$(E_{b}, E_{f}) = (0, 2), (20), (1, 2) \text{ and } (40)$$

$$\Rightarrow \text{ these correspond to the 6 terms in the Lagrangian (4) ! }$$

$$\Rightarrow we need 6 counterterms$$
Suppose we hadn't included the $2p \varphi^{4}$ interaction
$$\Rightarrow \text{ if would have been generated by }$$

$$\varphi \cdot \sqrt{p}^{2} \cdot \varphi \quad \text{have to include } 2SP^{4} \text{ as }$$

Nonrenormalizable field theories
Consider the Fermi theory of the
weak interaction:

$$Z = \overline{\Psi} (iY^{m} \overline{\mathcal{I}}_{m} - m_{p})\Psi + G(\overline{\Psi}\Psi)^{2}$$

$$\rightarrow \text{ the analogs of eqs. (1), (2), (3)}$$
now read:

$$L = I_{p} - (V-1)$$

$$4V = E_{p} + 2I_{p}$$

$$D = 4L - I_{p}$$
giving

$$D = 4L - I_{p}$$
giving

$$D = 4 - \frac{3}{2} E_{p} + 2V$$
we see that D now depends on V

$$\rightarrow \text{ amplitude for fermi-fermi}$$
scattering ($E_{p} = 4$) gets worse and
worse as we go to higher order
in perturbation series

$$\rightarrow \text{ for any } E_{p} \text{ we get divergent}$$

$$diagrams if V is sufficiently
large !$$

→ have to include infinitely,
many counterterms
$$(\bar{4}24)^3$$
, $(\bar{4}24)^4$,
 $(\bar{4}79)^5$,...
Dependence on dimension
the superficial degree of divergence
depends on dimension d of space time
→ $\int d^d k$ for each loop is d-dep.
Consider, for example, Fermi interaction
 $G(\bar{4}4)^d$ in d=(1+1)
→ $L = I_{f} - (V-1)$
 $4V = E_{f} + 2I_{f}$
 $D = 2L - I_{f}$
 $= 2(I_{f} - V-1) - I_{f}$
 $= 2(I_{f} - \frac{1}{4}(E_{f} + 2I_{f} - 4)) - I_{f}$
 $= 2I_{f} - \frac{1}{2}E_{f}$
→ no longer depends on V!
Fermi interaction is renormalizable ind-(1+1)?

General analysis (for bosons)
Consider a theory with pure
$$Q^r$$

interaction in d dimensions
 $\implies I = \frac{1}{2}(Vr - E)$
 $L = I - (V-I)$
 $D = Ld - 2I$

and hence $\mathcal{D} = (I - (V - I)) d - 2I$ $= \left(\frac{1}{2}\left(Vr - E\right) - \left(V-1\right)\right)d - 2\frac{1}{2}\left(Vr - E\right)$ $= V(\frac{1}{2}rd - r - d) + (d + E - \frac{1}{2}Ed)$ $= -V(d+r-\frac{1}{2}rd) + (d+E-\frac{1}{2}Ed)$ $= \sqrt{2}$ $\begin{bmatrix} \partial_n \mathcal{L} \partial^m \mathcal{L} \end{bmatrix} = d \longrightarrow [\mathcal{L}] = \frac{1}{2} d - l$ $\left[\begin{array}{c} \left[\begin{array}{c} \mathcal{A} \ \mathcal{C}^{r} \right] = \mathcal{C} \end{array} \right] = \mathcal{C} - \frac{1}{2} r \mathcal{C} + r$ $= -V[\lambda] + (d + E - \frac{1}{2}Ed)$

$$\rightarrow iff [n] = 0, D is independent
of V, this happens for $d_c = \frac{2r}{r-2}$
or $d_c = 4$ for φ^4 theory, $d_c = 6$ for φ^3 theory, and $d_c = 3$ for φ^6 theory, ...

$$\rightarrow at d = d_c \quad anly \quad finitely \quad many \\ counterterms \quad needed \quad \exists renormalizable" \\
. at $d > d_c \quad "non-renormalizable" \\
t \quad d < d \quad "anne \quad renormalizable" \\$$$$$